Role of Iron Supplements on Pregnancy Outcomes

Humayun Suqrat Hasan Imam, Muhammad Ikhlaq Anwar, Muhammad Faheem Anwar, Muhammad Murtaza, Rafshan Sadiq

ABSTRACT

Background: Anemia is one of the most widely recognized nutritional deficiencies for the duration of pregnancy in underdeveloped countries. It is a risk factor for preterm delivery and consequent low birth weight new born, and subsequent ill effects on neonate and infant health. Further research and sufficient data in different setting is required for determining the extent to which maternal anemia might contribute to maternal morbidity, mortality and impact on pregnancy outcomes. **Objective:** To assess the effects of iron supplements on pregnancy outcomes. **Study Design:** Cross-sectional study in which women delivered in hospital were questioned for history of intake of iron supplements during ante-natal period and new born was examined for any adverse effects of iron deficiency anemia. **Setting:** Hilal-E-Ahmar Maternity Hospital Faisalabad. **Results and Discussion:** 400 respondents were included in study that was regular in attending ante-natal clinic in the hospital during different gestational period. No significant adverse effects/outcomes were seen in women and newborn irrespective of frequency of iron supplementation already taken during these gestational periods. **Conclusion:** Majority of the newborn delivered full term and without any complication of pregnancy in this study as well as most of them had normal birth weight. This finding is linked with intake of iron supplements taken by majority of pregnant women during antenatal care. Incidence of low birth weight new born, abortion (spontaneous & therapeutic) and fetal deaths were almost negligible.

Keywords: Iron, Anemia, Hemoglobin, Pregnancy outcome.

Corresponding Author

Dr. Humayun Suqrat Hasan Imam Associate Professor, Community Medicine Faisalabad Medical University, Faisalabad Contact: +92 300-6601003 Email: dr humayun786@hotmail.com Submitted for Publication: 25-11-2017 Accepted for Publication: 14-12-2017

Article Citation: Imam HSH, Anwar MI, Anwar MF, Murtaza M, Sadiq R. Role of Iron Supplements on Pregnancy Outcomes. APMC 2017;11(4):320-4.

INTRODUCTION

According to the World Health Organization, the lack of red blood cells or hemoglobin affects 1.62 billion individuals (25%), and pregnant ladies accounts for 56 million of the total. People have now realized that iron deficiency causes serious health issues especially in women of fertile age, pregnant and lactating as well as infants and young children.

of deficiency is one the commonest Iron micronutrient deficiencies worldwide and it affects over two billion people approximately. Women are more likely to suffer from the deficiency of iron than men and its dominance rises during pregnancy. Through the period of second and third trimester, iron needs show a noticeable increase. It is very vital to have a good amount of iron reserves and iron supplements before pregnancy as absorbed iron needs cannot be fulfilled at that pregnancy from just food iron or iron supplementation during pregnancy.¹ A healthier and better lifestyle is observed if pregnant women with anemia are treated by iron supplements.²

Comparing the delivery status of anemic and nonanemic women, we come to see that anemic women tend to have a higher risk of pre-term delivery. In all anemic cases, the gestational weight gain (for gestation age) was found to be inadequate.³

The purpose of the study is to examine the role of iron supplementation during pregnancy on birth outcomes.

Literature Review

Anemia during pregnancy has been related with several adverse perinatal outcomes like prematurity, low birth weight, and maternal and perinatal mortalities.⁴ Haemoglobin criterion of < 11.0 g/dL is considered to fall in the anemia category. Serum Ferritin (SF) value under 12.0 ng/mL were as classified as iron deficiency according to WHO and US Centers for Disease Control and Prevention recommendations.⁴ A U-shaped curved represents the relation between maternal hemoglobin (Hb) and poor birth outcomes with increased risk observed at both ends of Hb spectrum.⁵ The American College of Obstetricians and Gynecologists recommend universal anemia screening and targeting iron supplementation for pregnant women who are found to be anemic. European Union guideline also advise taking iron supplements daily in the second-half of pregnancy.⁵ According to these UK guidelines, iron supplementation should only be considered for women with Hb concentrations < 11 g/dL in the first tri-mester or Hb concentrations <10.5 g/dL at 28 weeks of gestation.⁵ During pregnancy, the expansion of plasma volumes, rise in erythrocyte mass as well as the need to improve and promote growth and development of fetal-placental unit makes the preferred amount of iron to escalate.⁶ Iron is actively transported from the mother to the fetus through the placenta as iron is vital a lot of enzymes and hemoproteins that are essential for normal function of all cells. Roughly 80% of fetal iron is obtained in the last trimester of pregnancy in humans.⁷ Birth before 37 weeks of gestation is said to be the main cause of neonatal morbidity and mortality particularly in underdeveloped countries .8 In the nutritional supply line the fetus lies at the end with maternal nutritional intake at one end and fetal tissue uptake at other end. There was an abrupt and acute increase in the occurrence of preterm birth during the World War II and Dutch famine due to starvation and famine.⁸ Similarly, the nutritional condition is generally poor in Africa which has lead to highest preterm birth rates in that region. As studies have predicted low hemoglobin level in early pregnancy causes an increased risk of low birth weight, preterm birth and perinatal mortality.9 According to WHO iron-deficiency anemia (IDA) causes almost 20% of maternal deaths throughout the world.¹⁰ There are different causes of anemia in female of reproductive age, that can be divided into IDA, anemia because of blood loss, anemia secondary to infection such as malaria and pernicious anemia. In fact, when maternal hemoglobin amounts are less than 11.5g/DL and even greater than 13.0 g/dL, the possibility of undesirable outcomes increases.^{5,10} Pre-term delivery, low birth weight of the offspring and risk of maternal mortality in pregnant women is associated with iron deficiency anemia. It is worth mentioning that iron also serves as a nutrient for pathogens and iron supplementation may aggravate morbidity in areas with high burden of infections.¹¹ It is high unlikely that pregnant and child-bearing women meet their need of iron and other micronutrients through food alone.¹² Nonetheless, supplementation with folic acid and iron particularly, either prior to pregnancy or through the period of pregnancy, is recommended by numerous health organizations.^{4,12} The stages towards IDA start with depletion of iron stores then it is followed by iron deficient erythropoiesis and eventually there is reduction on Hb concentration.¹³

METHODOLOGY

This study was conducted on cross-sectional design. The respondents included in this study were parturient delivered in Hilal-E-Ahmar Maternity Hospital Faisalabad.

Inclusion Criteria: Respondents having antenatal cards of this hospital were included in this study. These pregnant ladies were attending antenatal clinic regularly during different gestational period and also normal vaginal delivery was conducted in the same hospital.

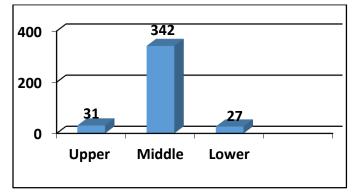
Exclusion Criteria: The pregnant ladies with complication of pregnancy like ante-partum hemorrhage, toxemia of pregnancy or co-morbidity were excluded. Female who were irregular for antenatal visits also excluded from study.

Sample Size: 400

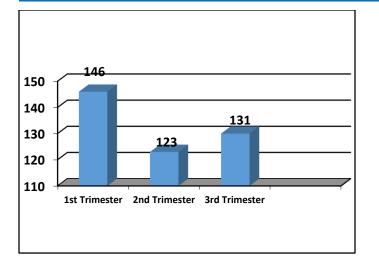
Duration: One year (2016)

Sampling Technique: Convenient sampling a type of non-probability sampling was used.

Data was collected through a close-ended questionnaire. Face to face interviews were conducted in the language the respondent understands. Ethical issues like informed consent and full explanation of study was strictly observed in each case. Interviews were conducted after the termination of pregnancy or abortion.

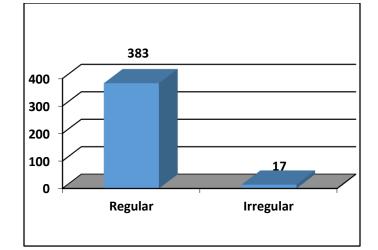

Pregnancy outcomes, either abortion, full term healthy newborn, pre-mature, or still birth were recorded. Any congenital abnormality of newborn was also evaluated through physical examination.

Statistical Analysis


The data was analyzed using SPSS 21. The quantitative variable like age was expressed as Mean \pm SD and categorical variables were expressed as frequency, proportion and percentages, appropriate graphs was used to display the data. A *P*-value <0.05 was taken as statistical significant.

RESULTS

Results are shown in the tables and graphs.


Graph1: Socioeconomic status

Graph 2: Start of iron supplements

Data Analysis Tables

Mean age = 26.45 years & Standard Deviation =

4.64 years (26.45±4.64 Years)

Table 1: Start of Iron Supplements during Pregnancy

Variable	Description	Frequency	Percentage	P Value
	1 st trimester	146	36.50%	
Start of Iron Supplements	2 nd trimester	123	30.80%	<0.001
	3 rd trimester	131	32.75%	

P value (<0.001) is highly significant.

Table 2: Frequency of intake of iron supplements

Variable	Description	Frequency	Percentage	P Value
	Regular	383	95.75%	0.001
Frequency of use Iron supplements	Irregular/Withdrawal during Pregnancy	17	4.25%	< 0.001

P value (< 0.001) is highly significant.

Table 3: Clinical sign & symptoms

Variable	Description	Frequency	Percentage	P Value
Clinical sign & symptoms of	No	254	63.50%	
anemia	Yes	146	36.50%	< 0.05

P value (< 0.05) is significant.

Table 4: Hemoglobin level of respondents

Variable	Description	Frequency	Percentage	P Value
Hemoglobin lovel during prognonou	Above 11g/dl	366	91.50%	
Hemoglobin level during pregnancy	Below 11 g/dl	24	6.00%	< 0.001

P value (< 0.001) is highly significant.

Table 5: Pregnancy outcomes

Variable	Description	Category	Frequency	Percentage
Pregnancy Outcomes		Full term	349	87.25%
		Pre-term	044	11.00%
	Status of Delivery	Spontaneous abortion	002	0.50%
		Therapeutic abortion	002	0.50%
		Fetal Death	003	0.75%
		Normal	368	92.00%
	Birth Weight of new born	Low	32	11.00% 0.50% 0.50% 0.75%

DISCUSSION

In developing countries, stillbirth rates are approximately 45 per 1000 birth, infections may account for 50% of all stillbirths. In newborns in the developed world, the single most important cause of perinatal death is preterm birth.¹⁴ It was also noticed in another study that the reported food intake in pregnant women does not meet national dietary recommendations for intake different micronutrients.¹⁵ A study in Tanzania found that increase in Hb was associated with reduced risk of perinatal and early infant mortality.¹⁶ More than 20 million low birth weight (LBW) infants (15% of all births) are born worldwide annually.¹⁷

In the present study the inner city population sample of women was taken into consideration as the hospital was in the heart of the city, Faisalabad, however, the comparison of rural and urban population will be helpful to emphasize the role of iron supplements on pregnancy outcomes. It is currently recommended by WHO that all pregnant women should receive prenatal supplementation with iron containing supplements, regardless of baseline Hb status.)^{4, 17} Requirement of significant amount of iron balance during pregnancy period should increase due to stopping of menstrual bleeding. This large requirement of iron hence cannot be met with usual diet so iron supplementation must be continued durina pregnancy.¹⁸ In our study majority of the female have iron level more than 11g/dl that is the reason for less complication during pregnancy. A normal pregnancy requires an amount of 840 mg with greater need in the second half. The daily iron needs in the second half of the pregnancy are anticipated as 6.7 mg per day even increasing 10-12mg per day in the last month of pregnancy.¹⁸ It has been observed that small-for-gestational-age (SGA) of newborn is considered to have higher risk of still-birth due to high and low hemoglobin level during pregnancy.¹⁸ However; these consequences of iron deficiency

anemia can be prevented with appropriate iron treatment. Health authorities and food agencies should make sure the values of nutrients present in the foods in their food list and should be thoroughly advertised through print media and health education of masses.

CONCLUSION

Majority of the newborn delivered full term and without any complication of pregnancy in this study as well as most of them had normal birth weight. This finding is linked with intake of iron supplements taken by majority of pregnant women during antenatal care. Incidence of low birth weight new born, abortion (spontaneous & therapeutic) and fetal deaths were almost negligible.

REFERENCES

- 1. Chann KK, Chan BC, Lam KF, Tam S, Loa TT. Iron supplements in pregnancy and development of gestational diabetes. BJOG. 2009, 116(6):789-97.
- 2. Fleming, A.F. A study of anemia of pregnancy in ibadan, western nigeria, with special reference to folic acid deficiency. Annu. Rev. Nurt. 2006:527-9.
- 3. Ekstrom, E.C. Adherence to iron supplement during pregnancy and its impact on hemoglobin level is affected by type of supplement. Division of Nutritional Science, Cornell University, Ithaca, NY. 2007:46-9.
- Salvi CCB, Braga MC & Filho MB. Diagnostic accuracy of hemoglobin for iron deficiency in pregnancy: disclosing results of a cited clinical trial. Rev Panam Salud Publica. 2014;36(2):110-6.
- 5. Cao C, O'Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev. 2012; 71(1):35-51.
- Hur J1, Kim H, Ha EH, Park H, Ha M, Kim Y, Hong YC, Chang N. Birth weight of Korean infants is affected by the interaction of maternal iron intake and GSTM1 polymorphism. J. Nutr. 2016; 143: 67-73
- 7. Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev. 2016;74(7):421-31.
- 8. Bloomfield FH. How is maternal nutrition related to preterm birth? Annu. Rev. Nurt. 2011. 31: 235-61

- Dibley MJ, Titaley CR, d'Este C and Agho E. Iron and folic acid supplements in pregnancy improve child survival in Indoesia. Am J Clin Nutr 2012; 95:220-30.
- 10. Miller EM. The reproductive ecology of iron in women. Am J Phys Anthropol 2016; 169:172-95.
- Kaestal P, Aaby P, Ritz C & Friis H. Markers of iron status are associated with stage of pregnancy and acute-phase response, but not with parity among pregnant women in Guinea-Bissau. Brit J Nutr. 2015; 114:1072-9.
- 12. Branum AM, Bailey R, Singer BJ. Dietary supplement use and folate status during pregnancy in the United States. J Nutr. 2013; 143: 486-92.
- 13. Alwan NA, Cade JE, McArdle HJ et al. Maternal iron status in early pregnancy and birth outcomes: insights from the Baby's Vascular health and Iron in pregnancy study. Brit J Nutr. 2015;113:1985-92.
- 14. Brabin L, Brabin BJ, Gies S. Influence of iron status on risk of maternal or neonatal infection and on

neonatal mortality with an emphasis on developing countries. Nutr Rev. 2013;71(8):528-40.

- Blumfield ML, Hure AJ, Macdonald-Wicks L, et al. Micronutrient intakes during pregnancy in developed countries: systematic review and meta-analysis. Nutr Rev. 2013;71(2):118-32.
- Abioye AI, Aboud S, Premji Z, et al. Iron supplementation affects hematologic biomarker concentrations and pregnancy outcomes among irondeficient Tanzanian women. J Nutr. 2016;146(6):1162-71.
- 17. Wang L, Mei Z, Li H, et al. Modifying effects of maternal Hb concentration on infant birth weight in women receiving 6prenatal iron-containing supplements: a randomized controlled trial. Brit J Nutr. 2016;115:644-9.
- Florence BL, Valerie B, Jacques B, et al, Anemia in benin: prevalence, risk factors and association with low birth weight. Am J Trop Med Hyg. 2011;85(3):414-20.

AUTHORSHIP AND CONTRIBUTION DECLARATION

AUTHORS	Contribution to The Paper	Signatures
Dr. Humayun Suqrat Hasan Imam Associate Professor & Head of Department of Community Medicine Faisalabad Medical University, Faisalabad	Literature search, Study design & concept, Data analysis & interpretation, Write-up	C S S S S S S S S S S S S S S S S S S S
Dr. Muhammad Ikhlaq Anwar APMO, Department of Community Medicine, Faisalabad Medical University, Faisalabad	Literature search, Proof reading	the'
Dr. Faheem Anwar Ex-Medical Superintendent, Hilal e Ahmar Hospital, Faisalabad. Director, HMIS Implementation Punjab Information Technology Board, Lahore.	Data collection, Write-up & data analysis	Jahoom
Dr. Muhammad Murtaza Medical Officer, Chest Department DHQ Hospital Faisalabad	Literature search	Uits.
Dr. Rafshan Sadiq DMRT, Principal Medical Officer, PINUM Cancer Hospital, Faisalabad	Literature search	ander